Lexicographically Smallest Equivalent String
CLOSED
'You are given two strings of the same length s1 and s2 and a string baseStr.
We say s1[i] and s2[i] are equivalent characters.
For example, if s1 = "abc" and s2 = "cde", then we have 'a' == 'c', 'b' == 'd', and 'c' == 'e'.
Equivalent characters follow the usual rules of any equivalence relation:
Reflexivity: 'a' == 'a'.
Symmetry: 'a' == 'b' implies 'b' == 'a'.
Transitivity: 'a' == 'b' and 'b' == 'c' implies 'a' == 'c'.
For example, given the equivalency information from s1 = "abc" and s2 = "cde", "acd" and "aab" are equivalent strings of baseStr = "eed", and "aab" is the lexicographically smallest equivalent string of baseStr.
Return the lexicographically smallest equivalent string of baseStr by using the equivalency information from s1 and s2.
Example 1:
```
Input: s1 = "parker", s2 = "morris", baseStr = "parser"
Output: "makkek"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [m,p], [a,o], [k,r,s], [e,i].
The characters in each group are equivalent and sorted in lexicographical order.
So the answer is "makkek".
```
Example 2:
```
Input: s1 = "hello", s2 = "world", baseStr = "hold"
Output: "hdld"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [h,w], [d,e,o], [l,r].
So only the second letter 'o' in baseStr is changed to 'd', the answer is "hdld".
```
Example 3:
```
Input: s1 = "leetcode", s2 = "programs", baseStr = "sourcecode"
Output: "aauaaaaada"
Explanation: We group the equivalent characters in s1 and s2 as [a,o,e,r,s,c], [l,p], [g,t] and [d,m], thus all letters in baseStr except 'u' and 'd' are transformed to 'a', the answer is "aauaaaaada".
```
Constraints:
1 <= s1.length, s2.length, baseStr <= 1000
s1.length == s2.length
s1, s2, and baseStr consist of lowercase English letters.'
Loading...